본문 바로가기
Study

Association analysis - RDA

by 주인 기다리는 강쥐 2022. 7. 26.

Multivariate redundancy analysis (RDA) in 

  - Analysis of associations between data with different units

  • Using z-score standardized data
  • 'vegan' package
  • 'rda' funtion
더보기

# Install package

library(vegan)

 

# Redating csv form data

data1 <- read.csv("C:/Users/data.csv", header=TRUE, row.names=1)

 

# Converting variable types after checking data and variable types

str(data1)

data1$Var1_1 <- as.numeric(data1$Var1)

data1$Var2_1 <- as.numeric(data1$Var2)

 

# Data separtion after checking variable name and column

colnames(data1)

data2 <- data1[,3:12] 
data3 <- data1[,13:17]
data4 <- data1[,18:25]

# Data z-score standardization  

## Centering (means~0), Scaling (standard deviations=1) 

data2_std.z <- decostand(data2 , method="standardize")
apply(data2_std.z, 2, mean)
apply(data2_std.z, 2, sd)   

data3_std.z <- decostand(data3 , method="standardize")
apply(data3_std.z, 2, mean)
apply(data3_std.z, 2, sd) 

 

# RDA

my.rda <- rda(data2_std.z ~ ., data=data3_std.z)
summary(my.rda)

 

  • Interpreting results
더보기

Partitioning of variance: 

  Inertia    Proportion
Total    5.000 1.0000
Constrained  0.231 0.0462
Unconstrained 4.769 0.9538


Eigenvalues, and their contribution to the variance 

Importance of components:

  RDA1 RDA2 RDA3 PC1 PC2 PC3 PC4 PC5
Eigenvalue 0.12472  0.09552  0.010785  1.4360  1.0720  0.9243  0.8090  0.5277
Proportion
Explained
0.02494  0.01910  0.002157  0.2872  0.2144  0.1849  0.1618  0.1055
Cumulative
Proportion
0.02494 0.04405  0.046205  0.3334  0.5478  0.7327  0.8945  1.0000


Variables explain 0.04% of the variance;

(0.12472+0.09552) / 5.000 = 0.04405%

 

The first constrained axis (RDA1) explains 0.12472 / 5.000 = 0.025% of the variance.

The secod constrained axis (RDA2) explains 0.09552 / 5.000 = 0.019% of the variance.
 


Receiver operating characteristic (ROC) in R

  - Validation the accuracy of the relationship

  • 'pROC' package
  • 'roc' funtion